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On the mechanical analogy of the renormalisation group in the 
large-n limit 
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Nazionale di Struttura della Materia, Unitl di Salemo, Salemo, Italy and Istituto Nazionale 
di Fisica Nucleare, Sezione di Napoli, 80125 Napoli, Italy 

Received 18 June 1986 

Abstract. Some aspects of the mechanical analogy recently proposed for the static and 
dynamic renormalisation group (RG) in the large-n limit are pointed out. In particular, 
starting from purely mechanical methods, a maximal set of the static RG invariants is 
obtained. Similar results also hold in the most complex dynamical case. Finally, by means 
of a canonical transformation, the original statistical mechanics problem is reduced to an 
equivalent anisotropic hyperbolic oscillator under stabilising conditions. 

It is well known (Nicoll et a1 1974, 1975, 1976, Nicoll and Chang 1978) that differential 
formulations of the Wilson RG are far more effective and convenient to apply than the 
finite recursion relation approaches. With this in mind, a differential formulation of 
the dynamic RG (DRG) in the large-n limit was recently presented (Busiello et a1 1983a) 
for the time-dependent generalisation of the n-vector classical model with purely 
relaxational dynamics, also including the static RG (SRG) (Busiello er a1 1981) as a 
particular ease. 

Some peculiar aspects of the RG differential equations led us to propose (Busiello 
et a1 1983a) an interesting mechanical analogy which yields an alternative geometrical 
picture for both the DRG and the SRG in the large-n limit. 

Here we present some preliminary results for the dual mechanical problem which 
may have a relevant role in obtaining useful information about the intrinsic structure 
of the DRG, whose general features are less well understood (SzCpfalusy and Tel 
1980a, b) than those of the SRG (Ma 1973, 1976). It is suitable to start with an outline 
of the main ingredients leading to the mechanical analogy mentioned. 

The time evolution of the order parameter +(x, T )  = {+a(x,  T);  a = 1, .  . . , n} of the 
n-vector classical model with purely relaxational dynamics is governed by the Langevin 
equation: 

where 

(2) 

and V(4' )  is a power series of C$'=X:=~ 4;. In ( l ) ,  g(x, T )  is a n-vector Gaussian 
white noise source and L = To(iV)' (c = 0, 2) where To is a real constant, conveniently 
put equal to one, and c = 0 ( c  = 2) corresponds to a non-conserved (conserved) order 
parameter. 
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The large-n limit DRG differential equations specified for the model above are 
(Busiello et a1 1983a) 
at, at .  at .  -+ (d - 2)( t,h2 - F )  I+ ( d  + c)( 8 - G )  -= ail, 
al w2 ae ( i  = 1,2) (3) 

where the t i  are unknown functions of the parameter 1 describing the progress of the 
RG averaging and of the new fields $ 2 =  42 /  N,, 8 = [ ( d  + c) / (d  - 2 ) ] ( ~ /  N , )  with 
N, =fnK,,/(d -2 )  and Kd = ~-“ / ’2’ -~ / / r (d /2) .  

Here Q = p(x, T) is an additional field generated by the construction of the initial 
large-n action within a path functional representation (SzCpfalusy and Tel 1980a, b, 
Graham 1977, Janssen 1976, Bausch et a1 1976) of the stochastic process (1). In (3), 
a ,=2 ,  a 2 = 4 + c  and 

F ( t l ,  t 2 )  = [(1+ f l )2-222]-1/2 G(t1, t 2 )  = 1 - ( I  + t l ) F ( t i ,  t2).  (4) 
The SRG transformation (Busiello et a1 1981) is simply obtained setting in (4) 8 = 0 
with t 2 (5  $’, 0) = 0 and t l ( l ,  $ 2 ,  0) E r ( l ,  $ 2 )  = [aU(l, 42)/dl]C2=Nc+2. With (3), to be 
solved with the initial conditions t i (O,  $2, 0 )  = 8) ( i  = 1,2),  all the known results 
for the dynamics (SzCpfalusy and Tel 1980a, b) and for the statics (Ma 1973, 1976) 
have been simply reproduced (Busiello et al 1981, 1983a) in a more natural way and 
some open questions have also been clarified (Busiello et al 1981, 1983a, Vvedensky 
1984a, b). Now, we wish to emphasise a remarkable characteristic of our RG differential 
formulation. By inspection of (3), a very peculiar structure appears: the coefficients 
of the corresponding derivatives are identical. Thus they constitute a system of 
quasi-linear first-order partial differential equations with the ‘same principal part’, 
whose properties are well established (Courant and Hilbert 1962). This surprising 
feature of the DRG (and, in particular, of the SRG) transformation in the large-n limit 
gives the possibility of introducing a new approach to the critical dynamic (and static) 
problem. 

In fact, the system (3) is equivalent to the single homogeneous linear partial 
differential equation (Busiello et a1 1983a): 

( 5 )  
for an unknown function Y (  1, { q,}) of the five independent variables 1, q1 = $’, q2 = t i ,  
q3 = 8, q4 = t2 where 

aY/al+ If({@}; {aulaq,}) = 0 

(6) 
j=l 

is a function not depending explicitly on the parameter 1, with 

P~ = aY/aq, ( j = l , . .  . ,4 )  
and 

a l = d - 2  a , = 2  a 3 = d + c  a4 = 4 + c. 

4, = aH/apj p, = -aH/aq, ( j=  1 , .  . . ,4 )  (7) 

The corresponding equations of characteristics assume the form: 

where X = dX/dl,  and the integration of the original RG system of quasi-linear partial 
equations (3) is ‘equivalent’ to the integration of the ordinary differential system (7). 

The results (5)-(7) provide the key for developing the mentioned mechanical 
analogy of the DRG (and the SRG) in the large-n limit. In fact, ( 5 )  is a Hamilton-Jacobi 
equation and (7) is the corresponding canonical system. Then, if one looks on the RG 
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parameter 1 as a ‘timelike’ variable, Y(1, {%}) can be regarded as the ‘action’ of an 
‘equivalent mechanical system’ whose Hamiltonian H({~J};  { p j } )  does not depend 
explicitly on ‘time’ 1. Of course, since a s l a 1  = fi = 0, the ‘constant of motion’ H is 
an ‘invariant’ under iteration of the DRG transformation. 

Notice that the mechanical analogue of the SRG is obtained from (5)-(7) setting 
q3 = q4 = 0 and it is defined by the action S(1, {s i } )  = Y(1, q l ,  q2 ,  0,O) and by the 
Hamiltonian 

with p i  = dS/dqi ( i  = 1,  2). 
New information about the original ‘statistical’ problem may be obtained starting 

from the above ‘deterministic’ mechanical analogy. In particular it is possible to 
develop a more intuitive geometrical picture of the RG in the large-n limit in the ‘dual 
phase space’. We postpone this programme to future investigations and here we limit 
ourselves to exploring an important aspect of the large-n RG transformation starting 
from the mechanical analogy. 

It is known (Nicoll et a1 1974, 1975) that the RG invariants play an important role 
near criticality. 

( a )  They are strictly connected with the RG non-linear scaling fields and are 
generated by their appropriate combinations. 

(b)  They contain information regarding relative stability of the RG fixed points 
and therefore may give a global picture about criticality and crossover phenomena. 

(c) They occur in the scaling expression of the free energy. 
Furthermore, useful indications about the topology of the RG parameter space and 

the nature of the flux trajectories may be obtained by the knowledge of a ‘maximal 
set’ of RG invariants, i.e. the number of independent invariants characteristic of a class 
of models near criticality. For instance some of these invariants can be used to label 
the RG trajectories and may therefore be considered as a measure of the criticality of 
a system. 

It is also established (Nicoll et a1 1974, 1975) that the number of independent 
invariants is strictly related to the number of independent non-linear scaling fields. It 
is therefore of interest to find general procedures for the construction of RG invariants 
and to obtain a maximal set for both critical statics and dynamics. 

Here we just show how to use the traditional tools of Hamiltonian mechanics in 
order to determine the invariants of the RG in the large-n limit as constants of motion 
in the ‘dual mechanical problem’. Specifically, we do the following. 

(i) Establish a priori the number of independent invariants characteristic of the 
RG in the large-n limit. 

(ii) Calculate explicit expressions of invariants depending on the q and p and 
obtain a maximal set. 

(iii) Derive invariants depending on the q only and therefore more directly con- 
nected with the original statistical problem. 

Point (i) immediately follows as a direct consequence of the Hamilton-Jacobi 
formulation (5)-(7). Since the canonical system (7) is of order Y (equal to eight for 
critical dynamics and to four for statics), only v - 1 (seven and three respectively) 
functionally independent RG invariants exist. 

Points (ii) and (iii) derive from the fact that the integrable Hamiltonian character 
of the dual problem allows us to use the standard construction method (Arnold 1978, 
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Abraham and Marsden 1979, Goldstein 1980) to exhibit the whole set of constants of 
motion and therefore the RG invariants in the original classical statistical mechanics 
problem in the large-n limit. We refer, for both clarity and brevity, only to the static 
mechanical problem with two degrees of freedom. However, what follows can be 
extended, in a straightforward way, to large-n limit critical dynamics corresponding 
to four degrees of freedom in Hamiltonian mechanics with seven independent constants 
of motion. 

Just by inspection, the function 

gives a constant of motion. PI and the static Hamiltonian H(’) = P2 jointly depend on 
q and p .  A further constant of motion only depending on the q (and therefore a RG 

invariant depending explicitly only on the original parameters of the RG problem) can 
now be constructed as a conjugate variable of PI in a new canonical coordinate system 
( Q1, Q2; PI, P2). The generating function So = S o ( { q i } ;  {Pi}) of the canonical transfor- 
mation ({ qi} ;  {pi}) c) ({ Qi}; {Pi}), which just gives a complete integral of the ‘time’- 
independent Hamilton-Jacobi equation for H”) (Busiello et a1 1983a), satisfies the 
following differential relations: 

aSo/aqi = p i ( { % } ;  ($1) aSo/aPi= Qi({%}; (61) (10) 

with the condition 

det (”-) aqi ap, # 0. 

Then, from (10) it follows that 

2 

so= c I pi({%}; dqi 
i = l  

Thus, the canonical map (10) is explicitly given by 

p 2  = ( d  -2)q,p,+2q2p2- ( d  -2)p1/(1+ 4 2 )  (13) ( d - 2 ) / 2  
P I  = Plq2 

in terms of which the equations of motion are 

Q1 = o  Qz= 1 PI = o  P2 = 0. (14) 

Of course, the corresponding Hamiltonian is H‘”’ = Pz . 
The constant of motion Q1 = Q1(ql, q2)  is just the announced large-n limit RG 

invariant only depending on the q. 
From our static analysis it emerges that Q1, PI,  Pz just constitute a maximal set of 

independent RG invariants. Indeed PI and Pz are independent by inspection and Q1 
is independent by construction. Furthermore Q1 is the only invariant not depending 
on the p since the p linearity of the Hamiltonian leads to completely separated dynamics 
for the q. 
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Analogous results can be found for the DRG but with more algebra. We omit the 
details and postpone to a future work a deeper discussion, together with the dual 
transformation also valid for the quantum RG in the large-n limit for which we have 
recently developed finite recursion relations and the corresponding differential formula- 
tion (Busiello e? al 1983b). 

Concerning (iii), we wish to note that the relevance, in the present context, of the 
constants of motion only depending on the q could suggest the use of a Lagrangian 
formalism. However it has to be remarked that the linearity in the p of the dual 
Hamiltonians ( 6 )  and (8) (and then their degeneracy in the usual mechanical sense) 
does not allow Legendre transformations in the given natural coordinates. Nevertheless 
it is possible to find new canonical coordinates removing the degeneracy of the 
Hamiltonian whose structure leads to a remarkable characteristic of the original 
statistical mechanics problem. Indeed, the canonical transformation 

where 

is the Hamiltonian of a four-dimensional anisotropic hyperbolic oscillator with frequen- 
cies w j = a j  (j=l, . . . ,  4) and 

with F, = F and F3 = G, gives rise to deviation effects from the unstable hyperbolic 
oscillator behaviour. 

The corresponding two-dimensional representation for the SRG can be simply 
obtained from the previous one with q1 = p :  = 0 ( i  = 3, 4). In any case the above new 
coordinates are suitable to look for additional insights about the original problem in 
Lagrangian terms. 

In conclusion, since the proposed mechanical analogy constitutes a new viewpoint 
in exploring the RG properties in the large-n limit, we hope that present preliminary 
results will stimulate further investigations on this interesting subject. 
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